USDA Food Composition and Nutrient Databases

David B. Haytowitz
Joanne M. Holden

Workshop Agenda

- A Bit of Food Comp History!
- What’s New:
 - SR highlights
 - Single Ingredient Meat Labeling
- Website tour
- NFNAP: Sodium Monitoring in Foods
- Exercise - Compositing
- Flavonoids Database: Version 3 release
- DSID-2 and Website Tour
- Q&A?
Dr. Atwater’s First “Database”

- Kept on large data cards similar to the spreadsheets in use today
- Five proximate components plus calories and refuse
- Recorded full descriptions and sources of data

History of USDA Food Composition Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigations Upon the Chemistry and Economy of Foods. Atwater and Woods</td>
<td>1892</td>
</tr>
<tr>
<td>Proximate Composition of Fresh Fruits. U.S. Dept. Agric. Cir. No. 50</td>
<td>1928</td>
</tr>
</tbody>
</table>
History of USDA Food Composition Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximate Composition of Fresh Vegetables. U.S. Dept. Agric. Cir. No. 146</td>
<td>1931</td>
</tr>
</tbody>
</table>

History of USDA Food Composition Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Year</th>
</tr>
</thead>
</table>
Components in foods may:

- Occur naturally (physiological function)
- Be generated in response to biological stress
- Be added to foods (fortification)
- Be the result of recipes or formulations (e.g., manufacturing)
- Be contaminants (direct or indirect)
- May accumulate due to feeding/fertilization

USDA National Nutrient Databank

- The “reference” source for food composition data
- Contains authoritative estimates on the composition of foods
- Provides the foundation for most other databases
 - National surveys: What We Eat in America - National Health and Nutrition Examination Survey (NHANES)
 - Therapeutic, clinical, and research databases
 - Food product development, labeling, and regulation
- Used by food industry, government researchers and policy makers, media, and consumers
Development of Databases: The Process

- Acquisition of data
- Evaluation of data quality
- Aggregation of acceptable values
- Compilation and calculations
- Dissemination of database
Initial Food Item

- Complete food descriptions (original & edited)
- Common measures
- Component data (e.g. refuse)
- Original nutrient values converted to standard units
- Data Quality Evaluation System scores applied based on information entered
- Quality control/data validation must be run before release to next step

Aggregated Food Item

- Nutrient, weight and component data from multiple sources are combined into one record
- Database is queried by keywords or other information in the Initial Food item
- Data can be grouped and weighted
 - Data from two or more companies can be weighted by market share
 - Data on fresh produce can be weighted by production information.
Statistical treatment of data

- Developed various scenarios to handle different types of data
- Provides additional statistical tools to staff for data management
- Provides enhanced statistics to database users
 - Mean, number of samples, SE, minimum and maximum values
 - Degrees of Freedom, number of studies

Statistical Features

- Standardized algorithms for aggregated estimates
- Reporting Error Bounds for a generic mean (depends on data types)
- Imputing values for “trace” and “Not detected Measurements
- Outlier testing (Ratios, QQ Plot, box plots)
- Statistical documentation (footnotes)
Compiled Data

- All data elements about the food item are finalized
- Selected from approved aggregated items
 - Can select data from more than one aggregated item, though
 - Only one value for a nutrient can be used
- Items are marked to indicate release in SR and/or for use in Food and Nutrient Database for Dietary Surveys (FNDDS)
- Assign NDB Number
- Fill in missing values, particularly in items used in FNDDS which requires 65 components

Data Quality Control

- Selected tests performed before data can be released:
 - Sum of proximates should not be more than 100
 - Sum of carbohydrate fractions should not exceed value for total carbohydrates
 - Sum of individual fatty acids should not exceed value for total fat
 - Sum of individual carotenoids times the appropriate factors should not exceed vitamin A value
 - Each food should have a refuse value, at least one household measure
Imputing Procedures

- A number of imputing methods are available.
- Calculations based on scientific principles
- Procedures have been standardized by nutrient class or food type.
- Source and derivation codes automatically assigned

Recipes and Formulations

- Integrated into the NDBS
- Developed in consultation with outside experts
- Can be used to impute missing values, or to calculate complete nutrient profiles
Approvals and Dissemination

- Data reports sent to experts for review:
 - Brand name data to companies
 - Commodity data to subject area experts
- Implement expert recommendations after careful consideration
- Documentation sent for peer review
- Data disseminated
 - ASCII files
 - Microsoft Access database
- Update data for USDA search programs

NDBS Summary

- System supports development of estimates on the nutrient content of foods
- Maintains reservoir of documentation for data from various sources
- Major features
 - Integrated modules
 - Statistical treatment of data
 - Formulations and recipes
 - Data Quality Evaluation System
 - Food yields and nutrient retention calculations
- Continual need for system upgrades and enhancements
USDA National Nutrient Database for Standard Reference

- Annual releases – SR24 (2011)
- 7900+ food items
- Values for up to 146 nutritional components
- Data statistics
- Systematic food descriptions
- Household weights and measures

USDA National Nutrient Database for Standard Reference

- Agricultural commodities, formulated foods and recipes
- Generic estimates for agricultural commodities, processed, and prepared fruits, vegetables, meats, poultry, grains
- Brand name and generic estimates for RTE cereals, selected fast foods, candies, beverages
<table>
<thead>
<tr>
<th>Food Group</th>
<th>Number of items in SR</th>
<th>Brand name items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fats and Oils</td>
<td>220</td>
<td>10</td>
</tr>
<tr>
<td>Soups, Sauces, and Gravies</td>
<td>510</td>
<td>262</td>
</tr>
<tr>
<td>Sausages and Luncheon Meats</td>
<td>234</td>
<td>10</td>
</tr>
<tr>
<td>Breakfast Cereals</td>
<td>408</td>
<td>302</td>
</tr>
<tr>
<td>Vegetables and Vegetable Products</td>
<td>814</td>
<td>14</td>
</tr>
<tr>
<td>Beverages</td>
<td>284</td>
<td>51</td>
</tr>
<tr>
<td>Legumes and Legume Products</td>
<td>386</td>
<td>132</td>
</tr>
<tr>
<td>Baked Products</td>
<td>497</td>
<td>78</td>
</tr>
<tr>
<td>Sweets</td>
<td>341</td>
<td>108</td>
</tr>
<tr>
<td>Fast Foods</td>
<td>385</td>
<td>205</td>
</tr>
<tr>
<td>Meals, Entrees, and Sidedishes</td>
<td>66</td>
<td>25</td>
</tr>
<tr>
<td>Snacks</td>
<td>169</td>
<td>4</td>
</tr>
<tr>
<td>Restaurant Foods</td>
<td>55</td>
<td>24</td>
</tr>
</tbody>
</table>

What’s new in SR24

- Updated data for
 - Foods monitored to capture changes in sodium resulting from manufacturer reformulations
 - Foods to support releases of the FNDDS
 - Selected non-enhanced fresh pork loin cuts
 - Non-enhanced dark meat chicken cuts.

- Added data for retail beef cuts derived from the rib and the plate
Traditional Components

- Proximate components
- Carbohydrate fractions
 - Individual sugars
 - Total starch
 - Dietary fiber
- Vitamins
- Minerals
- Amino acids
- Fatty acids

Expansion of Components in SR

- SR14 (2001)
 - Folic Acid, µg
 - Food Folate, µg
 - Folate as dietary folate equivalents (µg DFE)
 - Vitamin A as retinol activity equivalents (µg RAE)
 - Retinol, mg
- SR16 (2003)
 - Individual carotenoids, µg
 - Vitamin K, mg
 - Tocopherol (more foods), mg
 - Total Sugars (more foods), mg
Expansion of Components in SR

- SR18 (2005)
 - Added vitamin E
 - Added vitamin B₁₂
- SR19 (2006)
 - Fluoride
- SR20 (2007)
 - Total Choline and Betaine
- SR22 (2009)
 - Vitamin D (D₂ and D₃)
- SR23 (2010)
 - Dihydrophyloquinone and menaquinone-4

- Expanded coverage of fatty acids over many releases

What Do the Data Represent?

- Estimates of means or central tendency
- Nationally representative of food supply
- Based on high quality analytical data
- Recognized algorithms for calculation and estimation
Provision of Accurate and Current Data

- The U.S. food supply is constantly changing
 - New products are introduced
 - Existing products are reformulated

- Challenges for NDL:
 - Sodium reduction efforts
 - Changes in fortifications, including addition of vitamin D
 - Industry conversions to “trans-free” fats and oils

- NDL monitors industry changes through:
 - Food industry publications
 - Re-sampling and analysis of selected key foods (e.g., white bread, snack crackers)
 - Requests to manufacturers for new data

Sources of Data & Information Flow

![Diagram showing the flow of data and information]
Web Site Tour

USDA Food Composition and Nutrient Databases

National Food and Nutrient Analysis Program (NFnAP)
National Food and Nutrient Analysis Program

- NFNAP began in 1997 as an Interagency Agreement with National Heart Lung and Blood Institute, NIH
- Currently coordinated by National Cancer Institute, NIH
- Contributions from 10 Institutes and offices of the NIH, CDC and FDA
- Interest in generation of original analytical data with variability estimates

NFNAP: Aims

- Prioritize foods and critical nutrients
- Evaluate existing data quality
- Devise and implement a nationally-based sampling plan
- Analyze sampled foods / valid methods
- Compile and disseminate representative estimates
NFNAP: Aim 1

- Prioritize foods and critical nutrients
- Evaluate existing data quality
- Devise and implement a nationally-based sampling plan
- Analyze sampled foods / valid methods
- Compile and disseminate representative estimates

What are Key Foods?

The list of foods which provide about 75% of the intake of a specific component to the diet

- Frequency vs. concentration
- Foods alone and as ingredients
- Some foods are “key” for several nutrients
Key Foods – 1st Quartile

- Egg, whole, raw, fresh
- Milk, reduced fat, fluid, 2% milkfat
- Milk, whole, 3.25% milkfat
- Carrots, raw
- Salt, table
- Cheese, cheddar
- Margarine, regular, 80% fat, composite, stick
- Rolls, hamburger or hotdog, plain
- Milk, nonfat, fluid (fat free or skim)
- Ice creams, vanilla
- Milk, lowfat, fluid, 1% milkfat

1 NHANES 2007-08

Examples of NFNAP Foods

- Fast food chicken and other items
- Pizza (restaurant and frozen)
- Luncheon meats
- Cheese
- Snacks, cookies, and breads
- Bacon
- Turkey
Use of Market Share Data

- Catsup
 - Brand A - 39%
 - Brand B - 28%
 - Brand C - 22%
 - Total – 89%
- A few large brands which comprise most of the market

Use of Market Share Data

- Tortillas, flour
 - Brand A - 2%
 - Brand B - 2%
 - Brand C - 0.2%
 - Brand D - 0.2%
 - Brand E - 0.1%
 - Brand F - 0.04%
 - Brand G - 0.03%
 - Brand H - 0.0005%
 - Total - 4.6%
- Many small brands, but little variation in Ca and Na content
NFNAP: Aim 2

- Prioritize foods and critical nutrients
- **Evaluate existing data quality**
- Devise and implement a nationally-based sampling plan
- Analyze sampled foods / valid methods
- Compile and disseminate representative estimates

Evaluation of Data Quality:

Categories for Evaluation

Documentation is collected for:

- Sampling plan
- Sample handling
- Number of samples
- Analytical methodology
- Analytical quality control
NFNAP: Aim 3

- Prioritize foods and critical nutrients
- Evaluate existing data quality
- **Devise and implement a nationally-based sampling plan**
- Analyze sampled foods / valid methods
- Compile and disseminate representative estimates

NFNAP Sampling Strategy

- Stratified, probability-proportional-to-size (PPS)
 - 2000 US Census population data
 - Census regions/states/counties (US Census, 2002)
 - Urban and rural areas
- Three-stage design
 - Stage 1: 48 geographically dispersed counties
 - Stage 2: Grocery store outlets (sales > $2m)
 - Stage 3: Brand selection - market share data
- Retail, restaurant foods from 12-24 locations
- Point-of-production pickup for select foods (e.g., commercial ingredients) based on site production data
Sampling Plan

Sampling locations

- Retail outlets
- Fast food and other restaurants (ethnic, casual-dining)
- Manufacturing plants (industrial ingredients)
- USDA Commodity distribution points
- Individual homes (fluoride water samples)
- Indian reservations
NFNAP: Aim 4

- Prioritize foods and critical nutrients
- Evaluate existing data quality
- Devise and implement a nationally-based sampling plan
- **Analyze sampled foods / valid methods**
- Compile and disseminate representative estimates

NFNAP Infrastructure

- National Agricultural Statistical Service
- NDL: Statistical sampling plans, selection of foods, development of work plans, QC data review, incorporation of data
- Virginia Tech: Sample processing, documentation/tracking, preparation of control materials, sample shipment, archive samples, analytical QC review
- Sample Procurement Contractor: Sample procurement and shipping instructions
- Commercial Analytical Laboratories and University/Government cooperators

Data flows from the National Agricultural Statistical Service to the Sample Procurement Contractor and then to the Commercial Analytical Laboratories and University/Government cooperators.
Sample Analysis

- Use of valid methods
- On-going quality assurance program
- Qualification of commercial labs
- University labs

Sample Analysis

- Cooperative agreement with the Food Analysis Laboratory Control Center (FALCC) at Virginia Tech
 - Sample preparation and archiving
 - Analytical quality control (QC)
 - Method development (Folate, vitamin C, phytosterols)
- Contracts made with commercial analytical labs for general analysis (proximates, minerals, vitamins, fatty acids, amino acids)
- Cooperative agreements with university scientists for specialized analyses (vitamin K, choline, etc.)
- Cooperation with other USDA Labs, i.e. FCMDL
NFNAP: Aim 5

- Prioritize foods and critical nutrients
- Evaluate existing data quality
- Devise and implement a nationally-based sampling plan
- Analyze sampled foods / valid methods
- Compile and disseminate representative estimates

Compile and Disseminate Data

- Review analytical results
- Refer problems to lab for resolution or repeat analysis
- Migrate data to USDA’s Nutrient Databank System
- Process data through system
- Release data in annual updates of SR
National Food and Nutrient Analysis Program

- Sampled and analyzed over 1,800 food items
- Over 1,600 food items in SR have been added or updated using NFNAP data
- Provided data on ingredients for recipes/formulations and processed foods
- NFNAP data provides high quality data to support:
 - Nutrition Monitoring: FNDDS and the What We Eat in America component of NHANES
 - Nutrient values for critical, i.e. Key Foods

Exercise
USDA Food Composition and Nutrient Databases

Special Interest Databases

Demand for Composition Data on Emerging Components

- Interest in New “Bioactive” Components
 - Epidemiological studies
 - Clinical studies
 - Institute of Medicine-Dietary Reference Intakes

- Small, focused datasets of about 150 - 500 food items

- Limited to a single compound or class of compounds
Steps in Developing Special Interest Databases

- Identify need for database on a specific component or class of components
- Conduct literature search of published data
- Ascertain current and appropriate methods
- Identify major food sources
- If funding permits, conduct sampling and analysis of major food sources

Steps in Developing Special Interest Databases

- Evaluate and rate acceptable data
- Define structure of the database
- Conduct statistical analysis of the data
 - Determine how to combine data
 - Calculate mean, variance, and ranges
- Release database with confidence codes
USDA’S Databases for Bioactive Compounds

<table>
<thead>
<tr>
<th>Database</th>
<th>Year(s)</th>
<th>No. of Foods</th>
<th>Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoflavones</td>
<td>1999</td>
<td>128</td>
<td>Genistein, daidzein & glycitein</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>549</td>
<td></td>
</tr>
<tr>
<td>Flavonoids</td>
<td>2003</td>
<td>220</td>
<td>Flavonols, flavones, flavanones, flavan-3-ols & anthocyanidins</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>385</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Proanthocyanidins</td>
<td>2004</td>
<td>205</td>
<td>Mono- thru polymers of flavan-3-ols</td>
</tr>
</tbody>
</table>
USDA Food Composition and Nutrient Databases

Dietary Supplements Ingredient Database

Dietary Supplement Ingredient Database (DSID): What is it?

- Database validated by analytical data for key supplement ingredients of public health importance

- Collaborators with USDA Nutrient Data Laboratory:
 - Office of Dietary Supplements, NIH
 - National Center for Health Statistics, CDC
 - Analytical Chemistry Division, NIST
 - Food and Drug Administration
Dietary Supplement Ingredient Database (DSID)

Why is DSID needed?

- In national surveys, ~50% of U.S. population and ~30% of children take 1 or more dietary supplements
- Researchers need accurate estimates of nutrient intake from food plus DS for dietary assessment & diet-health relationships
- Other current DS databases are label-based

DSID Study Design Steps

1. Identify products and ingredients
2. Procure samples and analyze ingredients
3. Assess analytical data with statistical techniques
4. Identify methods and qualified labs
5. Choose representative products using statistical sampling plans
6. Publish Results
Current and Future Studies

- Children’s MVMs: DSID-2
- Omega-3 (n-3) Fatty Acid Products
- Over-the-counter Prenatal MVMs
- Adult MVM monitoring study

DSID-2 Release

Analytically-based estimates of children’s MVM nutrient values

1. Predicted values and SE’s within a range of labeled nutrient levels
2. Links between nutrient estimates and NHANES levels

Data files include:
DSID Summary

- The analytically-based Dietary Supplement Ingredient Database-Release Two (DSID-2) will be released tomorrow.

- DSID-2 includes a nutrient calculator and data files for children's and adult MVMs

- Food and dietary supplement data are valuable for accurate assessment of the U.S. population's total nutrient intake

Presentations: Talks

- ARS/USDA Updates Food Sampling Strategies to Keep Pace with Demographic Shifts.

- Sources of Variability in the Flavonoid Content of Food.

- USDA Monitors Levels of Added Sodium in Processed and Prepared Foods

- Updates to the NHANES Dietary Supplement Data

- Prioritizing Non-Vitamin and Mineral Ingredients (Non-VM) in the Dietary Supplement Ingredient Database (DSID).
Presentations: Posters

- USDA Updates Nutrient Values for Fast Food Pizza
- USDA Develops a Database for Flavonoids to Assess Dietary Intake
- Changes in Nutrient Levels for Three Fresh Pork Loin Cuts Between 1992-2010
- LanguAL: Controlled Vocabulary for Indexing Dietary Supplements in U.S. Databases
- INFOODS Advances in Standard Settings, Useful for Food Composition and Dietary Assessment

International Activities

- International Network of Food Data Systems (INFOODS)
 - Serves as host for the North American Regional Center (NORAMFOODS)
 - Participates in the development of standards
 - Data Interchange format
 - TagNames
 - Participates in food composition training courses
 - International Food Data Conference
"You can't keep running in here and demanding data every two years."

Nutrient Data Laboratory

Web Site:
http://www.ars.usda.gov/nutrientdata