Innovative Dietary Sources of Omega-3 Fatty Acids
or
“The challenges of monitoring intake of LC N-3 PUFAs”

Jay Whelan, PhD, MPH

Department of Nutrition
Tennessee Agricultural Experiment Station
The University of Tennessee, Knoxville TN

2007 National Nutrient Databank Conference
Washington, DC
April 27, 2007
n-6 Family

- LA (linoleic acid)
 - delta-6 desaturase
 - elongase
- GLA (gamma-linolenic acid)
 - delta-5 desaturase
- DGLA
 - elongase
- AA (arachidonic acid)
 - COX-1
 - COX-2
- Prostaglandins
- Thromboxane
- Prostacyclin
- Cancer
- CVD
- Inflammation

n-3 Family

- ALA (alpha-linolenic acid)
 - SDA (stearidonic acid)
 - 20:4 n-3
 - elongase
 - delta-5 desaturase
 - EPA (eicosapentaenoic acid)
 - DPA (docosapentaenoic acid)
 - 24:5 n-3
 - elongase
 - delta-6 desaturase
 - peroxisomal oxidation
- DHA (docosahexaenoic acid)
- Whelan et al., 2005

Sources
- Vegetable oils: i.e., canola, soybean, flax
 - Specialty oils: i.e., borage and evening primrose oils
- Fish & fish oil, Echium oil, Black current oil, GMO veg oils
- Terrestrial meats
- Vegetable oils, meats, eggs
- Vegetable oils: i.e., canola, soybean, flax
- Fish & fish oil, Terrestrial meats
- Fish & fish oil, Terrestrial meats
The Effect of EPA/DHA (fish & fish oil) Consumption on CVD Mortality

<table>
<thead>
<tr>
<th>Study</th>
<th>N-3 PUFA g/day</th>
<th>Effect on CVD Mortality (RR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascherio (1995)</td>
<td>70 mg/d vs 580 mg/d</td>
<td>NS (n=44,895)</td>
</tr>
<tr>
<td>Singh (1997)</td>
<td>+1.08 g/d (EPA)</td>
<td>↓ (n=122)</td>
</tr>
<tr>
<td>Albert (1998) (Physicians Health Study)</td>
<td>10 mg/d vs ≥247 mg/d</td>
<td>NS (n=20,551)</td>
</tr>
<tr>
<td>Marchioli (2002) (GISSI Prev. Trial)</td>
<td>+1 g/d (EPA+DHA)</td>
<td>↓ (n=11,323)</td>
</tr>
<tr>
<td>Hu (2002)</td>
<td>67 mg/d vs 533 mg/d</td>
<td>↓ (n=84,688)</td>
</tr>
<tr>
<td>Hu (2003) (Nurses Health Study)</td>
<td>40 mg/d vs ≥250 mg/d</td>
<td>↓ (n=5,103)</td>
</tr>
<tr>
<td>Mozaffarian (2005)</td>
<td><250 mg/d vs ≥250mg/d</td>
<td>↓ (n=45,722)</td>
</tr>
<tr>
<td>Yzebe (2004)</td>
<td>Meta-Analysis</td>
<td>↓ (n=13,780)</td>
</tr>
</tbody>
</table>
Risk of Developing Cancer: Highest Group vs Lowest Group of Omega-3 Fatty Acid
“Based on analysis of a single 24 hour recall in NHANES III, only 25% of the US population reported any amount of daily EPA or DHA intake.”

Translation: 75% of the US population is VEGANS

http://www.ahrq.gov/clinic/tp/o3cardtp.htm
Can it be related to reported levels of long chain highly unsaturated fatty acid compositions, i.e., AA, EPA, DPA, DHA?
Why is this important?

• The USDA database is the gold standard database for nutrient composition

• The USDA database is the primary source for most of the food analysis software used in research

• It is used in setting public policy with regards to recommendations
Beef, rib eye, small end (ribs 10-12), separable lean and fat, trimmed to 0" fat, all grades, cooked, broiled

Refuse: 8% (Bone and connective tissue)
NDB No: 13952 (Nutrient values and weights are for edible portion)
(as of April 22, 2007)

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Units</th>
<th>Value per 100 grams</th>
<th>Number of Data Points</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>g</td>
<td>57.52</td>
<td>20</td>
<td>0.591</td>
</tr>
<tr>
<td>Protein</td>
<td>g</td>
<td>27.27</td>
<td>20</td>
<td>0.378</td>
</tr>
<tr>
<td>Total lipid (fat)</td>
<td>g</td>
<td>14.74</td>
<td>20</td>
<td>0.788</td>
</tr>
<tr>
<td>Ash</td>
<td>g</td>
<td>1.10</td>
<td>20</td>
<td>0.02</td>
</tr>
<tr>
<td>Fatty acids, total polyunsaturated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:2 undifferentiated</td>
<td>g</td>
<td>0.402</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>18:3 undifferentiated</td>
<td>g</td>
<td>0.093</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>18:4</td>
<td>g</td>
<td>0.000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>20:4 undifferentiated</td>
<td>g</td>
<td>0.053</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>20:5 n-3 (EPA)</td>
<td>g</td>
<td>0.000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>22:5 n-3 (DPA)</td>
<td>g</td>
<td>0.000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>22:6 n-3 (DHA)</td>
<td>g</td>
<td>0.000</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

However, 8 oz of Rib Eye contains 67 mg EPA/DPA/DHA!

And ~70% of that is DPA, not EPA or DHA!

Taber et al., Lipids 33:1151, 1998
DPA: the forgotten n-3 PUFA?

- DPA (22:5 n-3) is a major LC n-3 PUFA in terrestrial meats and maybe of particular importance in assessing risk for chronic diseases.

- For example, Howe et al. estimates
 - that 43% of the LC n-3 PUFA in the Australian diet is derived from land-based meats
 - DPA is the major LC n-3 PUFA in those food sources

18:3 (ALA)
20:5 (EPA)
22:5 (DPA)
22:6 (DHA)
Current estimates for the amounts of EPA+DHA in the diets of various countries:

<table>
<thead>
<tr>
<th>Country</th>
<th>Amount (mg/d)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>~100-200 mg/d</td>
<td>(Kris-Etherton 2003)</td>
</tr>
<tr>
<td>Canada</td>
<td>143 mg/d (pregnant women)</td>
<td>(Holub 2005)</td>
</tr>
<tr>
<td>Australia</td>
<td>246 mg/d</td>
<td>(Howe 2004)</td>
</tr>
<tr>
<td>Germany</td>
<td>215/315 mg/d (women/men)</td>
<td>(Linseisen 200)</td>
</tr>
<tr>
<td>France</td>
<td>400/500 mg/d (women/men)</td>
<td>(Astorg 2004)</td>
</tr>
</tbody>
</table>
Problems with modifying foods with LC n-3 PUFA:

• Our food supply is rapidly changing with regards to n-3 PUFA content and this complicates our inability to accurately assess n-3 PUFA intake because
 1. We lack appropriate tools to do this now
 2. Enriching/fortifying non-traditional foods will provide a continually moving target
Non-Traditional Dietary Sources of N-3 PUFA

<table>
<thead>
<tr>
<th>Food</th>
<th>Serving</th>
<th>ALA (mg)</th>
<th>EPA+DHA (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breads and Pasta</td>
<td>100 g</td>
<td>113-1600</td>
<td>8-80</td>
</tr>
<tr>
<td>Cereals (and granola bars)</td>
<td>1 cup (55 g)</td>
<td>1000-4900</td>
<td>--</td>
</tr>
<tr>
<td>Milk</td>
<td>250 ml</td>
<td>--</td>
<td>10-190</td>
</tr>
<tr>
<td>Eggs</td>
<td>1 egg (50 g)</td>
<td>100-600</td>
<td>86-150</td>
</tr>
<tr>
<td>Processed Meats</td>
<td>100 g</td>
<td>490</td>
<td>88-190</td>
</tr>
<tr>
<td>Salad Dressing</td>
<td>14-31 g</td>
<td>2000-4000</td>
<td>700</td>
</tr>
<tr>
<td>Margarine spreads</td>
<td>10-100 g</td>
<td>300-1000</td>
<td>60-150</td>
</tr>
<tr>
<td>Pizza</td>
<td>1 slice</td>
<td>--</td>
<td>32</td>
</tr>
<tr>
<td>Nutrition Bars</td>
<td>50 g</td>
<td>70-2200</td>
<td>3-115</td>
</tr>
<tr>
<td>Juices</td>
<td>6 oz</td>
<td>--</td>
<td>100</td>
</tr>
</tbody>
</table>
Tip-Top Bakeries
• Australia

Wegman’s n-3 Breads
• microencapsulated powder
 (80 mg LC n-3)

Omega 3 Super Eggs
Flax fed chickens
• Texas
 per egg
 - OMEGA 3 DHA 150 mg

Parmalat Omega 3 Milk
• Europe/S.A
 per slice
 - OMEGA 3 121 mg
 - OMEGA 3 ALA 84 mg
 - OMEGA 3 EPA 6 mg
 - OMEGA 3 DHA 27 mg
 per 200 ml
 - OMEGA 3 120 mg
 - OMEGA 3 EPA 60 mg
 - OMEGA 3 DHA 60 mg

Pasta with Omega 3 eggs
• France
Microencapsulated Tuna oil (Nu Mega)

Cheeses

Orange Juice with MEG-3* (fish oil and fish gelatin)

- OMEGA 3

per slice
- OMEGA 3 32 mg

per serving
- OMEGA 3 50 mg
The primary ways that these products are being enriched/fortified with n-3 PUFA:

• Bio-delivery: feeding an animal the n-3 PUFA precursor (i.e., ALA) and enriching their tissues with LC n-3 PUFA (i.e., EPA, DPA in meats, and DHA in eggs)

• Adding the n-3 PUFA rich/enriched oils directly to foods (post-harvest modification of the foods)

• Post harvest modification of the oils: Micro-encapsulation of the oil to maintain stability and mask flavors

BASF, Roche, Clover, Nu-Mega, Wudel, Inc and Ocean Nutrition Canada (ONC), have created microencapsulated fish oil powders for use in food products.

These companies used spray dried emulsion technology or a process involving complex coacervation to form powders to create the shell of the microcapsule.

A powder you add to foods to supplement the diet

Omega-3 Fish Oil Powder you can add to juice or food

- 500mg Omega-3 (DHA + EPA) per serving
- No fish taste or smell
- No large fish oil capsule
- No unpleasant fish burps
- Convenient delivery system for adults and children
Ubisol-Aqua™ using nanotechnology has generated a water soluble fish oil/ n-3 PUFA • by Zymes LLC

Ideal for fish oil / omega 3-fortified fruit juices, i.e., grape juice or in apple juice
Development of plant sources LC n-3 PUFA

• DHA generated from algae, i.e., Martek’s DHASCO oil (40% DHA)

• Genetically modified plant oils, (i.e., Monsanto’s SDA-enriched canola oil, and genetically-modified soybean by a number of companies)
SUMMARY

• These changes further exacerbate our inability to maintain accurate, up-to-date food composition databases for n-3 PUFA, and further challenge the ability of scientists to ascertain true health risks associated with their consumption.

• With the ability to provide cheaper and safer sources of LC n-3 PUFA (compared to fish), along with the technological advances that improve palatability and stability, commercial development of non-traditional foods that are enriched/fortified with n-3 PUFA will only increase.

• The Result: Quantifying LC n-3 PUFA intakes in the US will become even more daunting.
Thank You

Supported by Tennessee Agricultural Experiment Station, Institute of Agriculture, The University of Tennessee, Knoxville, TN.

(Portions of this research were recently published in the Annual Review of Nutrition 26:75-103, 2006)